

Automatic CNC Code Generation for Profiles and Pockets

T.R. Kannan1, T.V. Rajakumar2, T.J. Praveen2

1Assistant Professor, 2U.G.Students

Dept. of Mechanical Engineering, K.L.N. College of Engineering, Pottapalayam-630611.
1kthoguluva@yahoo.co.in

Abstract: The present market scenario necessitates programmable flexible automated systems

to cope up with the global competition. CNCs play a vital part in such systems. But for

manufacturing different parts using CNCs, it requires CNC programming expertise. Though

systems that can automatically generate CNC programs from the 3D models are commercially

available, they cost a fortune to medium and small-scale industries. Most of these industries use

low end drafting softwares like AutoCAD. If a system that can interpret data from AutoCAD and

that can generate CNC programs automatically is developed, then it will be much useful. Such a

system is proposed in this paper. The system is developed using ‘C’. It takes the AutoCAD

filename in the DXF format as the input and extracts the data of the entities to generate CNC

programs (for FANUC Controller) automatically. This reduces the programming time, avoids the

need for a skilled programmer and increases the production rate at lower costs. The system can

generate CNC programs for different profiles and pockets. For pocketing, the system uses zigzag

tool path. The developed system is able to generate CNC programs effectively for various profiles

and pockets

Keywords: DXF File, FANUC Controller, CNC, Profile milling, Zigzag pocketing.

1. INTRODUCTION

Globalisation has necessitated products to be
manufactured with high quality at lower costs.
Also, the manufacturing systems should be able to
manufacture different parts at shorter lead times

due to the quick obsolescence of products. This
trend necessitates programmable flexible automated
systems. To achieve this, CNCs are being widely
used nowadays. The number of CNC controllers
available in the market has increased dramatically
and requires sufficient CNC programming

expertise. Commercial systems that can
automatically generate CNC programs from the 3D
models are too costly and hence are not affordable
by the medium and small-scale industries. Such
industries normally use low end drafting softwares
like AutoCAD. A system that can automatically
generate CNC programs by interpreting data from
AutoCAD would be much useful and cost effective.
Such a system is proposed in this paper. The
general structure of the system is as shown in Fig 1.

Fig 1. General Structure of the System

The system is developed using ‘C’. The AutoCAD
filename in the DXF format is given as the input.
From the DXF file, the data of different entities in
the drawing are extracted. The extracted data is
rearranged in a form suitable for generating CNC
programs (for FANUC Controller). Then, the cutter
location data is developed based on the profile or
pocket and the complete CNC program is obtained
as output from the system. Apart from the DXF
filename, tool diameter and depth of cut are given
as inputs to the system.

2. DATA EXTRACTION

DXF file is a neutral file format by which the
drawing data can be retrieved and used for any
application program development [1]. It consists of
seven sections. The entity section contains the
geometric data of all the entities. A typical data in

the entities section for a line and arc shown in Fig 2
are given in Table 1 and Table 2 respectively. For
lines, the starting and endpoint coordinates are
extracted. Similarly for arcs, the centre point
coordinates, radius, start and end angles are
extracted.

Fig 2. Typical Entities in a Drawing

Table 1. Line Data in the Entities Section
 of DXF File

Table 2. Arc Data in the Entities Section

(a)

(b)

 of DXF File

3. DATA REARRANGEMENT

A typical input drawing is shown in Fig 3. The
drawing consists of an open loop and a closed loop.
Open loops can be considered as profiles whereas
closed loops may be profiles or pockets. In order to
differentiate between profiles and pockets, profiles
are drawn using centrelines and pockets are drawn
using solid lines. In Fig 3(a), we can see that the
lines are not in proper order to form either an open
loop or closed loop and hence the lines have to be
rearranged as shown in Fig 3(b). It involves
rearranging the sequence of lines in the database as
well as rearranging the start and end points. i.e. line
L1 starts from P1 and ends at P2, whereas line L3
starts at P5 and ends at P2. Lines L1 and L3 have to
be renamed as E1, E2 and the start and end points
of E2 have to be rearranged as V2 and V3
respectively.

Fig 3(a) Unarranged Lines and Data
Fig 3(b) Rearranged Lines and Data

Loops have entities that share their start and end
points with other entities within the loop. In Fig
3(a), line L1 shares one of its points P2 with L3 and
shares the other point P1 with L6. This information
is used for determining loops and rearranging data.
Loop determination procedure is done as follows.
The first entity say L1 is taken and is renamed as
E1. It is checked whether any other entity is having
the end point (P2) of line L1 as its start or end
point. In this case, line L3 is having P2 as its end
point. Hence line L3 is renamed as E2 and the start
and end points (P5 and P2) are renamed as V2 and
V3 respectively. This procedure is continued till no
other connected entity is available. By this
procedure, open or closed loops are identified and
rearranged in a form suitable for generating cutter
location data. Entities E1, E2, E3, E4, E5 and E6
form a closed loop and the rearranged data are
shown in Table 3. Then it is checked whether there
are any other entities remaining. If so, an entity
among the remaining entities is taken arbitrarily
and the check for open or closed loop is again
performed among the remaining entities. In this
case, lines L7, L8 and arc A1 are remaining and
they form an open loop. Thus all the entity data are
rearranged.

Table 3. New Entity Tags with Rearranged
 Start and End Points

4. CNC CODE GENERATION

The CNC code generation is carried out by two
separate modules namely profile milling module
and pocket milling module. The rearranged data is
split into open loops and closed loops. Open loops
are processed by profile milling module and
depending on the line type, the closed loops are
processed either by profile milling module or
pocket milling module. First the start up of the
CNC program is generated and written in a separate
file. Then the appropriate body of the program is
supplied by the profile and/or pocket milling
modules and finally the end of the program is
appended to the CNC program. The file name of the
CNC program is taken as the drawing file name
itself except the extension type.

4.1. Profile Milling

The rearranged data of profiles provide the
information necessary to generate the body of the
CNC program. Line entities are milled using G01
and arc entities are milled using G02 or G03
depending on the direction. The tool is moved
rapidly using G00 to the start point of the first
entity above the Z level (say Z1). After that the tool
is inserted into the billet using G01 up to the

specified depth (say Z-1). Then the tool is moved to
the start point of the consecutive entities till the last
entity using G01 or G02 or G03. Finally the tool is
moved to the end point of the last entity and then
moved above the Z level (say Z1). If any other
profiles are there, then again the same procedure is
followed. After completing all the profiles, the
control is given to the pocket milling module if any
pockets are to be milled. Otherwise, the tool is
returned to the home position. In profile milling,
determining the direction of the arc entities is an
important task. In DXF files, the arc start and end
angles are always stored in the counter clockwise
direction regardless of the direction of arc
generation. Hence to find out the direction of arcs, a
rule is used. If the connecting point of any entity
with the arc is at the end point of the arc then the
arc direction is clockwise (G02) else counter
clockwise (G03). The start and end points, the
directions and the corresponding codes used for
various arc configurations are shown in Fig 4.

Fig 4. Arc Directions and Codes for
Different Configurations

Fig 5. Generation of Horizontal Lines
for Pocket Milling

4.2. Pocket Milling

The pocket milling module uses zigzag pocketing.
After obtaining the rearranged data of pockets, the
maximum (Ymax) and minimum (Ymin) Y
coordinate value of the loop is determined (Fig 5).
Horizontal lines are generated at a distance of A
mm apart as shown in the Fig 5. A = Ymin + 0.8*D,
where D is the tool diameter, 0.8 is constant for tool
overlap. A total number of (n-1) lines will be
generated where n is given by
n = (Ymax –Ymin) / (0.8 * D). The intersection
points of the first horizontal line with the profile
entities are found out. Intersection point is
determined only when the Y value of the horizontal
line is lying within the range of Y values of the
particular pocket entity. Similarly the intersection
points of consecutive horizontal lines are found out.
The intersection point between any two lines as
shown in Fig 6 can be found out as follows:

Given the parametric equations of lines L

Fig 6. Intersection of two lines

Fig 7. Tool Path Centre for Pocket Milling

The parametric equations of lines LA and LB are
PA = P1 + uP2; where u varies from 0 to 1;
P1 & P2 are the start and end points of line LA;
PB = P3 + vP4; where v varies from 0 to 1;
P3 & P4 are the start and end points of line LB;
PA and PB are any point on the lines LA and LB for
the corresponding parameter values u and v
respectively;

A and LB,
the value of the parameter u’ for the line LA at the
point of intersection of lines LA and LB [2,3] is
given by

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−−−
−+−−−

−=
)12(*)43()12(*)43(

)3*44*3()43(*1)43(*1 u'
YYXXXXYY

YXYXXXYYYX

The point of intersection PINT is obtained by

 PINT = P1 + u’P2

For pocket milling, first the pocket profile is milled
and then the tool is taken to the intersection point
(PI1) having the lowest X coordinate value of the
first horizontal line (Fig 7). The tool is moved to
the second intersection point (PI2) of the first
horizontal line. The tool is then moved to the
second intersection point (PI3) of the second
horizontal line and then to first intersection point
(PI4) of the second horizontal line and so on.

Fig 8. Sample Profiles and Pockets Milled Using

the Developed System

5. CONCLUSION

The developed system effectively generates CNC
programs for different profiles and pockets. Few
sample profiles and pockets for which the system
automatically generated CNC programs are milled
and shown in Fig 8. This reduces the programming
time, avoids the need for a skilled programmer and
increases the production rate at lower costs. The
system demonstrates that even with low end
drafting softwares like AutoCAD, application
softwares such as automatic CNC programming can
be developed. With the present availability of cheap
and skilled personnel, such applications can be
developed in-house at an affordable cost. The
system generates CNC programs for 2½D profiles
and pockets only for FANUC controller. The same
work can be extended to include 3D pockets and
profiles by extracting data from STL formats. Also,

with slight modifications the system can be
converted to generate CNC programs for any other
controller.

6. REFERENCES

1. www.autodesk.com.

2. Rogers. D.F. and Adams. J.A.,

“Mathematical Elements in Computer
Graphics”, McGraw Hill book Company,
Newyork, 1976.

3. Ibrahim Zeid, “CAD/CAM Theory and

Practice”, Tata McGraw-Hill, 1998.

